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Computation of Supersonic Flows
over Three-Dimensional Configurations

Kuo-Yen Szema,* William L. Riba,* Vijaya Shankar,T and Joseph J. Gorskit
Rockwell International Science Center, Thousand Oaks, California

An aerodynamic prediction technique based on the steady form of the full-potential equation has been applied
to a variety of three-dimensional supersonic flow problems exhibiting embedded subsonic regions. A conser-.
vative switching scheme is employed to transition from the supersonic marching procedure to a subsonic relaxa-
tion algorithm, and vice versa. Numerical solutions are obtained for a number of complex configurations, in-
cluding advanced tactical fighter, Langley canard-wing fighter configuration, isolated shuttle orbiter, and mated
shuttle orbiter configuration with external tank. The computed results are in good agreement with available ex-

perimental data.

Nomenclature
a =speed of sound
ay, =transformation metric {%+ ¢2
Cp =drag coefficient
C, =1ift coefficient
Cys = pitch-moment coefficient
C, =pressure coefficient
ij,k =streamwise, radial, and circumferential indices
J = Jacobian of transformation
M, = freestream Mach number
q* =[p*7~!/m2]", sonic condition
U, V,W  =contravariant velocities
X, V52 = Cartesian coordinates
o =angle of attack
Y =ratio of specific heats
&n. € =transformed coordinates
0 = density
o* =sonic density
1) =velocity potential
(") =wing sweep angle
Introduction

HE prediction of inviscid low supersonic Mach number

flowfields about complex three-dimensional configura-
tions is of great interest to both researchers and designers. For
treatment of such flows, full-potential methods!-? based on a
space-marching procedure offer the advantage of requiring
only moderate computer resources (memory and time) while
maintaining sufficient accuracy.

In the full-potential method of Refs. 1 and 2, the equation is
transformed to a generalized, nonorthogonal, curvilinear
coodinate system and is solved by a highly efficient, implicit,
finite difference scheme based on the characteristic theory of
signal propagation. A space-marching technique is used when
the flow is supersonic in a given marching direction. If the
velocity in the marching direction becomes subsonic, the do-
main of dependence changes and the marching scheme is
modified to a relaxation-type method through a conservative
switching operator.
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The presence of subsonic pockets in a supersonic flow oc-
curs very frequently near fuselage-canopy junction areas and
wing leading-edge regions. In fact, future design of advanced
fighter wings (M, = 1.2-2.0, wing sweep ~ 48 deg) will pur-
posely incorporate subsonic regions near the leading edge to
benefit from the leading-edge suction peak associated with
subsonic flows.

In Ref. 1, a numerical mapping technique is used to
generate the body-fitted coordinate system at a marching
plane. The key advantage of this method is that it has no
restrictions on its applicability to complex geometries and in-
tricate shocked flowfields. In contrast to the general coor-
dinate formulation of Ref. 1, the method of Ref. 3 is based on
a spherical plane marching technique and its application to
general three-dimensional geometries is yet to be
demonstrated.

The main purpose of this study is to investigate the
usefulness of the methodology of Ref. 1 in treating supersonic
flows with large embedded subsonic regions over complex
geometries, including realistic fighter configurations, shuttle
orbiter, and multibody configurations (orbiter on top of the
external tank/solid rocket boosters) at low supersonic Mach
numbers (M, =1.2 to 2.0).

Analysis

The physical and computational coordinate systems are
shown in Fig. 1. As discussed in Refs. 1 and 2, the entire
flowfield is divided into three regions (see Fig. 2): 1) the pure
supersonic region, 2) the marching subsonic region (MSR),
and 3) the total subsonic region (TSR). The basic governing
equations and boundary conditions are essentially the same as
in Ref. 2 and, therefore, only a brief discussion of the method
is presented here.

Governing Equation

The conservative form of the full-potential equation cast in
an arbitrary coordinate system defined by {={(x,3,2),
n=n(x,»z), and £=£(x,y,2) can be written as

()0

where the density is given by

p= [1 —WT_I)M%O {U¢>§+ Vo, + Wo, — 1}] VoD ()

and M, is the freestream Mach number, U, V, and W are the
contravariant velocity components, and J is the Jacobian of
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Fig. 1 Computational coordinate system.
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Fig. 3 Fighter-like configuration (ATF).

the transformation. The treatment of each term in Eq. (1), in-
cluding the density biasing procedure and the implicit approx-
imate factorization algorithm, can be found in Refs. 1 and 2.

Initial Conditions
Supersonic Flow Region

For a pure supersonic flow, initial conditions are required at
the starting plane. For sharp-nosed configurations, conical
solutions are prescribed, and for a blunt-nosed configuration,
the axisymmetric, unsteady, full-potential solver of Ref. 4 is
used to obtain the detached bow shock flowfield in the
forebody regiosi.

Embedded Subsonic Flow Region

When Eq. (1) is applied at the (i + 1) plane within an embed-
ded subsonic region, information on the flux pU at the (i +2)
plane is required. For the first relaxation pass, sonic condi-
tions are assumed at (7 + 2)

2 y—1

e N m)w—l 3)
Pir2=pP <’y+1 7+1
Uir=q* a11,~+>27

where
q* — [p*—y—l/M%o]‘/z

Sonic values p* and g* are purely a function of the
freestream Mach number M, . The quantity a,, is a transfor-
mation metric term.
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Table 1 Test cases
C{:\se 1 Case 2 Case 3 Case 4
(Fig. 3) (Fig. 10) (Fig. 12) (Fig. 17)
M, 1.6, 1.4 2.0 1.4 1.4
o See Table 2 4.0 0deg, —1.94 deg 0 deg

Boundary Conditions

In order to solve the full-potential equation, it is essential to
specify appropriate boundary conditions on the body surface
and along the outer boundary.

Body Surface

At a solid boundary, the contravariant velocity V is set to
zero. Exact implementation of V=0 in the implicit treatment
of Eq. (2) is described in Ref. 1.

Outer Boundary

The outer boundary is outside the bow shock where the free-
stream velocity potential ¢, is imposed. All discontinuities in
the flowfield are captured. The precise density biasing ac-
tivator of Ref. 1, based on the characteristic theory, allows for
sharp capturing of shocks in the flow.

Swept Trailing-Edge Wake Treatment

In order to treat the region behind the trailing edge, an ar-
tificial cut is created, and the pressure jump [p] across this cut
is imposed to be zero as a boundary condition. The full-
potential equation is not solved at grid points on the wake cut.
Instead, ¢,,=0 is solved to provide [p]=0 across the wake
cut. A complete discussion of this is given in Ref. 2.

Method of Solution

Figure 2 shows the schematic of a fuselage-canopy forebody
geometry with an embedded MSR and TSR present in a super-
sonic flow. To solve this problem, the marching scheme of
Ref. 1 is used when (a,; — U?/a?) is negative, and a relaxation
scheme is used when (a,, — U?/a?) is positive.

First, march from the nose up to the plane denoted by A-B
in Fig. 2, using the method of Ref. 1. Then, between planes
A-B and C-D, which embed the subsonic bubble (MSR and
TSR), use a relaxation scheme and iterate until the subsonic
bubble is fully captured. Finally, resume the marching scheme
from the plane C-D downstream of the body.

Geometry and Grid System

The geometry of a configuration is prescribed at discrete
points in a cross plane (usually x = constant planes) at various
axial locations. These geometry input points are usually ob-
tained from a geometry package such as GEMPAK? or CDS.¢
The input points are then divided into several patches, and at
each patch a key-point system is established. The geometry at
a marching plane is then obtained by joining appropriate key
points for each patch. Using a cubic spline passing through the
key points, a desired grid-point distribution (clustering) is set
up on the body surface. Then, by choosing an appropriate
outer boundary, the grid for the flowfield calculation is
generated by using an elliptic grid generator. More discussions
can be found in Ref. 2.

Results

Results for the following five different configurations are
presented to demonstrate the versatility and robustness of the
code in handling a wide variety of nonlinear flows:

Case 1: Advanced tactical fighter configuration (Fig. 3).
Case 2: Langley canard-wing fighter configuration (Fig. 8).
Case 3: Isolated shuttle orbiter (Fig. 12).

Case 4: Multibody configuration: shuttle orbiter with external
tanks/solid rocket boosters (Fig. 17).
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Fig. 4 ATF chordwise pressure distribution; M_ =1.6, «=1.24,
Z=183 in.

-08 T T T T T T T T T
—— O UPPER
_o4k ——~ LOWER |
: 048 ROCKWELL
DATA

‘0.0 01 02 03 04 05 o086 07 08 09 1.0
Xic

Fig. 5 ATF chordwise pressure distribution; M =1.6, «=1.24,
Z =245 in.

T T T T L

—NLSA D‘ATA k

0.4}

© FULL POTENTIAL + Cpg
0.3 [~ § FULLY TURBULENT

CL Cor

1 1 1 it 1 1 1
0 0.010.02 0.030.040.05 0.06 0.07 0.08
Co
a) DRAG COEFFICIENT (WING SWEEP ANGLE A = 48°)

CL

b) LIFT AND PITCH MOMENT COEFFICIENT
(WING SWEEP ANGLE A\ = 48°)

Fig. 6 Comparison of measurement and full-potential prediction at
M =1.6 for 48 deg sweep linear multipoint design wing.

Table 2 Test cases for the advanced tactical fighter configuration

e 5° 4.5° 5° 4.5°
M, 1.6% 1.6° 1.4° 1.6°
A 48° 48° 48° 55°
Cy Code 0.298 0.3016 0.3561 0.29186
Data 0.277 0.295 0.342 0.283
Cp Code 0.0482 0.04916 0.04117 0.0404
Data 0.0457 0.0493 0.0426 0.0396

aWithout vertical tail. ®With vertical tail. A= wing sweep angle.
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The test conditions for each of these cases are summarized in
Table 1.

Case 1

Figures 4 and 5 show the chordwise pressure distribution on
the upper and lower surfaces at 60% (183 in.) and 80% (245
in.) span stations, respectively. The results show that the pres-
ent predictions are in very good agreement with Rockwell’s ex-
perimental data.

Figure 6 shows the comparison of overall forces and
moments in terms of C;, Cp, and C,,. The full-potential
results compare very well with NASA data. The drag calcula-
tion Cp includes the skin-friction and base drag. The com-
puted viscous drag was for a fully turbulent condition at the
test unit Reynolds number of 2 x 105, The 48-deg wing sweep
results of Fig. 6 correspond to a supersonic leading-edge con-
dition of 3.3 deg. The lift and drag coefficients from the pres-
ent calculations for this fighter model, at different Mach
numbers, are summarized in Table 2. The results are in ex-
cellent agreement with experimental data.

Figure 7 shows the grid and pressure contours for the same
fighter geometry with a nacelle mounted on the undersurface
of the wing. Only the exterior of the nacelle is modeled as part
of the wing-body combination. At an axial marching station
immediately preceding the inlet face, initial conditions are
generated by interpolation from the flowfield without the
nacelle. The shock formed around the nacelle near the inlet
face (see Fig. 7) is diffused at downstream stations.

Case 2

Figure 8 shows a fighter model tested at NASA Langley that
has a canard and a fuselage-mounted flow-through nacelle.
The actual computational geometry and the surface grid
employed in this study are shown in Fig. 9. Computations
were performed for this configuration at M, =2 and a=4
deg. Figure 10 shows results of cross-flow streamlines, surface
pressures, pressure contours, and cross-flow velocity vectors
at an axial station where the fuselage, wing, canard wake, and
nacelle are all presented. The nodal singularity in pressure
contour present at lower wing-body junction regions cor-
responds to a saddle singularity of cross-flow streamlines, as
shown in Fig. 10. Note the pressure match along the canard
wake cut. The upper and lower center plane pressure contours
at M, =2.0 and «=4.0 deg are shown in Fig. 11. The bow
shock, canopy shock, nacelle shock, and expansion wave are
all nicely presented in this figure.

Case 3

Figures 12-16 give the geometry, the gridding, and the cor-
responding flowfield solutions of the isolated shuttle orbiter at
M, =14, a=0, and —1.94 deg. The chordwise pressures on
the upper surface are shown in Fig. 13, and they compare very
well with the experimental data. Figure 14 shows the cir-
cumferential pressure distribution for the orbiter at x= 1200
in. It is noted that the pressure along the vertical tail and the
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Fig. 7 Pressure contour and grid of ATF with nacelle; M, =1.6,
o =S5 deg at x=375 in.
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Fig. 9 Computational geometry and surface gridding for Langley
fighter configuration.
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Fig. 10 Solution for Langley figher configuration, M, =2.0,
«=4.0, x=14.0; a) Streamline. b) Surface pressure coefficient. c)
Pressure contour. d) Velocity vector.

orbital maneuvering subsystem (OMS) pods are well
predicted.

Figure 15 shows the details of the orbiter geometry as
modeled in this study. The OMS pod is clearly seen in Fig. 15.
Figure 16 presents a series of isobar plots at different x loca-
tions. The onset of the OMS pod shock formation is clearly
seen. The OMS pod shock is formed around x= 1065 in., then
grows, and finally hits the upper wing surface at approxi-
mately x = 1090 in. The foot of the OMS pod shock moves fur-
ther away from the fuselage for increasing x along the orbiter.
The trace of the shock foot on the upper surface is also shown

J. AIRCRAFT

Fig. 11 Upper and lower centerplane pressure contour for Langley
fighter configuration; M, =2.0, a=4.0.
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Fig. 12 Shuttle orbiter configuration.

in Fig. 16, and a comparison between the experimental shock
and the numerical prediction is made. It should be mentioned
that, since the present method is valid for supersonic flow with
an embedded subsonic region, it allows one to treat the actual
shuttle orbiter without having to make any modifications in
geometry.

Case 4

Figure 17 schematically illustrates the multibody interaction
problem of the shuttle orbiter in a mated configuration with
the external tank (ET) and solid rocket boosters (SRBs) pres-
ent. Figure 18 shows a perspective view of the complicated
multibody problem as modeled by this full-potential code. It is
found that the external tank has no effect on the upper wing
surface and only a small effect on the lower wing surface of
the shuttle orbiter. The high pressure present on the lower sur-
face of the orbiter wing is caused by the aft attach struts that
connect the orbiter to the external tank. The presence of the
aft attach struts is modeled by a wedge blockage effect and the
ET and SRBs are modeled by an elliptic cross-section exter-



DECEMBER 1985

T 1
UPPER WING \\—i
M, = 140 FULL POTENTIAL SOLUTION

@ = -1.94 ® o ® EXPERIMENTAL DATA \

0534
-0.6 0618
-0.4
0.2 0.726
Cp 00
6.2 0.811
04
06 0.877
0.961
. S S|
764 864 964 1064 1164
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nal tank. Figure 19 shows the gridding and the isobar plot for
this multibody problem at an axial station where the wedge
blockage effect is present. The detached bow shock formed by
the blockage is clearly shown in this figure. Chordwise
pressure distribution of the orbiter lower surface at 7=0.34,
with and without the blockage, is given in Fig. 20. The result
with the blockage effect included shows a very good com-
parison with the experimental data.

Conclusion

The main objective of this study is to illustrate the versatility
and usefulness of a recently developed nonlinear aerodynamic
prediction capability based on the full-potential equation.
Results are shown for a variety of complex configurations, in-
cluding a multibody problem. Comparison of results with
available experimental data are in good agreement. The fully
vectorized version of this code takes about 4 to 5 min of CPU
time for analysis of typical fighter-like configurations on the
CYBER 176 computer and about 25-30 s on the CRAY-XMP
for a marching plane grid of 70 x 25.
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